| 
View
 

Question 5

This version was saved 17 years, 6 months ago View current version     Page history
Saved by PBworks
on April 30, 2007 at 6:49:24 pm
 

Question 5

 

You MAY NOT use a calculator to solve this question.

 

Let ƒ be the function given by ƒ(x) = 2x4 - 4x2 + 1.

 

(a) Find an equation of the line tangent to the graph at (-2, 17).

 

(b) Find the x- and y-coordinates of the relative maxima and minima. Verify your answer.

 

(c) Find the x- and y-coordinates of the points of inflection. Verify your answer.

 

Solution

 

(a) In order to find the equation of the tangent line, we need to find the derivative of f(x).

 

    f(x) = 2x4 - 4x2 + 1

    f'(x) = 8x3 - 8x

    y' = 8x(x2 - 1)

    y'(-2) = 8(-2)[(4) - 1]

    y'(-2) = -16[3]

    y'(-2) = -48 (slope of the tangent line)

 

Point-Slope Formula:

 

    y - y1 = m(x - x1)

    y - (17) = -48(x - (-2))

    y - 17 = -48(x + 2)

    y = -48x - 96 + 17

    y = -48x - 79 (equation of the tangent line)

 

(b) Now that we have the derivative of f(x), we can use it to find the minimum and maximum of the parent function.

     If we can recall, whenever the parent function has a minimum and/or maximum, the derivative function has a root.

 

    f'(x) = 8x(x2 - 1)                                                       

     0    = 8x(x2 - 1)                                                   

     8x = 0 , x2 - 1 = 0

     x = 0 , x = -1 , 1 (roots of the derivative)

 

y- coordinates

 

    f(x) = 2x4 - 4x2 + 1                        f(1) = 2(1)4 - 4(1)2 + 1                   f(0) = 2(0)4 - 4(0)2 + 1      

    f(-1) = 2(-1)4 - 4(-1)2 + 1              f(1) = 2 - 4 + 1                                f(0) = 0 - 0 + 1

    f(-1) = 2 - 4 + 1                             f(1) = -1                                          f(0) = 1

    f(-1) = -1

 

Since the graph has 4 as its highest power, we can assume that the graph has 4 roots. Therefore, the graph will look like

a "W".  Using the number line of the derivative funcion,

 

              -                +                    -                  +

f'(x)                +                  +                     +               

                     -1                  0                     1

 

Therefore:   min(-1,-1)

                min (1,-1)

                max (0,1)

 

(c) To find the inflection points, we need to find the minimum and maximum of the derivative function.

     Whenever the parent function has a root, the derivative has an inflection point.

 

    f(x) = 2x4 - 4x2 + 1 

 

Quadratic Formula:

   

    x = -b +/- (b2  - 4ac)1/2

                  2a

    x = -(-4) +/- [16 -4(2)(1)]1/2

                       2(2)

    x = 4 +/- (8)1/2

               4

 

Root 1:

x = 4 + (8)1/2                                   

          4                      

x = 4 + 2(2)1/2

          4

x = 1 + (2)1/2

              2

 

Root 2:

x = 4 - (8)1/2

          4

x = 1 - (2)1/2

            2

 

 

 

-being solved by jann =D

 

 

Comments (0)

You don't have permission to comment on this page.